Introduction to IDEM's Draft Pilot Program Guidance for Vapor Intrusion

The IDEM Pilot Program for Vapor Intrusion is a guidance document;

- •It provides a suggested approach to investigate sites to determine if the vapor intrusion pathway is complete from a source to a potential receptor.
- •It provides screening numbers for ground water, soil gas, and subslab soil gas for five commonly-occurring contaminants.
- •It provides health-protective numbers for indoor air for 61 contaminants.

The IDEM vapor guidance is a "Pilot Program"

- •Groundwater, soil gas, and indoor air data will be collected and evaluated over time from affected sites.
- •Screening levels for groundwater and soil gas may be changed based on the site-specific data.
- •The indoor air numbers are health-based, and will not change unless the underlying toxicological data is changed.

State & Federal Guidance Documents

Vapor Intrusion Guidance Documents:

- •EPA (November 2002), Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils.
- •Updated EPA guidance is due to be released later this year.

Other States with Vapor Intrusion Guidance Documents:

- •Alaska (2004)
- •Minnesota (2005)
- •New Jersey (2005, Draft)
- •New York (2004, Draft)
- •Ohio (2005)
- •Pennsylvania (2002, Draft)
- **•**Wisconsin (2003)

State & Federal Guidance Documents

States with Indoor Air Guidance Documents:

- •Colorado (2004)
- •Massachusetts (2002)
- •New Hampshire (2000, Draft)

Additional Vapor Intrusion Guidance:

•Vapor Intrusion Issues at Brownfield Sites

Produced by the ITRC (December 2003)

- •The EPA (2002) vapor intrusion draft guidance lists 114 volatile compounds in their screening tables.
 - ➤ Based on the health-protective indoor air numbers, EPA developed "target" screening levels concentrations for ground water, deep soil gas, and shallow soil gas.
- •IDEM's draft guidance follows EPA's basic approach.
 - **➤ IDEM calculated screening level concentrations for ground water, soil gas, and sub-slab soil gas.**

- •IDEM vapor intrusion screening level concentrations for ground water and soil in most cases significantly exceed RISC industrial default closure levels.
- •This means that sites with potential vapor intrusion problems will usually require remediation of soils or ground water based on RISC closure levels.
- •Vapor intrusion investigations will not determine the need for remediation of on-site soils or ground water.

The IDEM Approach to Vapor Intrusion IDEM Guidance vs. EPA Guidance - 1

- •The EPA (2002) vapor intrusion draft guidance lists 114 volatile compounds in their screening tables.
- •IDEM's draft guidance focuses on five chemicals of concern (COCs) based on occurrence and toxicity:
 - **Benzene**
 - **➤ Tetrachloroethene (PCE)**
 - >Trichloroethene (TCE)
 - >1,2 Dichloroethane (1,2-DCA)
 - **≻Vinyl Chloride**

The IDEM Approach to Vapor Intrusion IDEM Guidance vs. EPA Guidance – 1

- •IDEM has developed soil, groundwater, soil gas, and sub-slab gas screening numbers for these five compounds.
- •Although screening levels were developed for only five contaminants, IDEM has health-protective indoor air numbers for 61 compounds (about half of the EPA list).
- •Groundwater, soil gas, or sub-slab gas screening numbers can be calculated for these additional compounds as needed.

The IDEM Approach to Vapor Intrusion IDEM Guidance vs. EPA Guidance - 2

- •The EPA (2002) vapor intrusion draft guidance screening level numbers are for residential properties.
- •IDEM's draft guidance has similar screening level numbers, for both residential and commercial settings.
- •IDEM's commercial screening levels are 2.1 to 6.6 times higher than the residential screening levels, depending on the contaminant.

Appendix VIII - Tables

Loam

790

820

Table 1 Screening Levels for Benzene

			Ground V	Vater Screen	g Levels	for Benzene (μg/l)					
		Residential				Commercial					
	Residential	Dept	h to Ground	Water		Commercial	Dep	th to Ground	l Water		
	Short Term	5ft	10ft	15ft		Short Term	5ft	10ft	15ft		
8	Sand	95	100	120	9	Sand	300	340	400		
ځ	Loamy Sand	200	220	230		Loamy Sand	670	700	740		
•	Sandy Loam	490	500	520	=	Sandy Loam	1600	1600	1700		

Loam

2600

2700

2800

850

The IDEM Approach to Vapor Intrusion IDEM Guidance vs. EPA Guidance - 3

- •The EPA (2002) vapor intrusion draft guidance screening numbers are based on chronic (30 year) exposure.
- •IDEM's draft guidance for chlorinated contaminants (TCE, PCE, 1,2-DCA and VC) are based on 1, 5, 10, 20, or 30 year exposure periods.
- •This means that if you know the exposure is less than 30 years, a higher screening level can be applied.

The IDEM Approach to Vapor Intrusion IDEM Guidance vs. EPA Guidance - 4

- •The EPA (2002) vapor intrusion draft guidance has a single screening number for ground water for each constituent.
- •IDEM's draft guidance has a series of groundwater screening numbers based on depth to ground water and soil type.
- •This means that screening levels can be applied based on known site conditions.
- •For example, deeper groundwater levels have higher screening numbers.

Appendix VIII - Tables

Table 4
Residential Ground Water Screening Levels

			Tet	rachlo	roethyler	ne (PCE)		-	Trichlore	ethylen	e (TCE)		
	Г	PCE			Depth to Ground Water			$I \Gamma$	TCE		Depth to Ground Water		
	1 Year		5ft	10ft	15ft		1 Year	5ft	10ft	15ft			
Year	ΙГ	9	Sand		120	130	160	l 👳	Sand	77	84	99	
<u>`</u>	oil Type	Ž	Loamy	Sand	260	270	290	<u>8</u>	Loamy Sand	170	180	190	
•		<u>=</u>	Sandy	Loam	630	640	660	Ⅱ등	Sandy Loam	400	410	420	
		0											
		လိ	Loam		1000	1100	1100	N.	Loam	650	680	700	
			Loam		1000				Loam TCE		680		
											, i .,,	700 Water 15ft	
ear		\$	PCE		Depth to	Ground	d Water		TCE	Depth t	o Ground	d Water	
5 Year			PCE 5 Yea	r	Depth to	Ground 10ft	d Water	Type	TCE 5 Year	Depth to	o Ground	d Water 15ft	
5 Year		be S	PCE 5 Yea Sand	r Sand	Depth to 5ft 23 51	Ground 10ft 25	d Water 15ft 30	S S	TCE 5 Year Sand	Depth to	o Ground 10ft	Water 15ft 20	

IDEM's draft guidance is divided into two parts, based on the contaminants:

Part A, BTEX Sites:

The primary contaminant is Benzene

Part B, Chlorinated Sites:

Tetrachloroethene (PCE)

Trichloroethene (TCE)

1,2 Dichloroethane (1,2-DCA)

Vinyl Chloride

BTEX Sites - Background Information:

- •Relative to many environmental contaminants, petroleum releases into the environment are generally well behaved:
- •Liquid petroleum floats on the water table making it easier to find and recover.
- •Petroleum releases are generally biodegradable in aerobic environments (at least the lighter fractions).

Therefore;

- •Groundwater plumes from petroleum releases tend to be short,
- •Areas of potential vapor intrusion are typically smaller, and adjacent to the site,
- Petroleum releases tend to be more easily managed.

Chlorinated Sites - Background Information:

- •Chlorinated solvent releases are generally not very biodegradable in aerobic subsurface environments.
- •High density and low viscosity = high mobility in the subsurface.

Therefore;

- •Groundwater plumes can be very long, depending on the geologic environment,
- Areas of potential vapor intrusion may be large, and extend a considerable distance from a site,
- Chlorinated solvent releases can be very complex, and not easily managed.

IDEM's draft guidance is divided into two parts, based on the COCs:

Part A, BTEX Sites:

- •The primary COC is Benzene
- •The exposure duration is assumed to be fixed at 5 years.
- Longer exposure will require a "non-default" evaluation.

IDEM's draft guidance is divided into two parts, based on the COCs:

Part B, Chlorinated Sites:

- •COCs include PCE; TCE; 1,2-DCA; and VC.
- Screening levels are based on exposure duration.
- •Screening levels have been developed for 1, 5, 10, 20, and 30 years exposure.
- •This approach requires an estimate be made of the likely time of exposure, but provides higher screening levels for shorter term exposures.

•The IDEM guidance is intended to establish whether a pathway exists between a source (contaminated soil or groundwater), and a potential receptor (indoor air) using a sequential investigation approach.

Establish the pathway:

- •Site-specific soil and groundwater data are compared to the appropriate soil and groundwater screening levels in the guidance.
- •If those screening levels are exceeded, then soil gas or sub-slab vapor samples are collected and compared to the soil gas and subslab screening levels.
- •If soil gas or sub slab samples exceed screening levels, then indoor air samples are collected.

One exception to the sequential approach:

If soil or groundwater concentrations are more than ten times higher than screening levels, IDEM recommends prompt, simultaneous sampling of soil or sub-slab gas AND indoor air.

This allows a more rapid evaluation of potential exposure.

EPA (2002) uses a multiplier of 50 times, however, the EPA screening numbers are much lower to begin with.

When do you not use this guidance?

- •If immediate threats exist (fire, explosive atmosphere, etc.)
- •If there are noticeable petroleum or solvent odors. If odors are present, sample indoor air promptly.
- •If contaminated groundwater is present within five feet of a structure, beneath a basement or slab.
- •Significant preferential pathways exist connecting a source area with a structure (sewer lines, utility conduits, etc.)

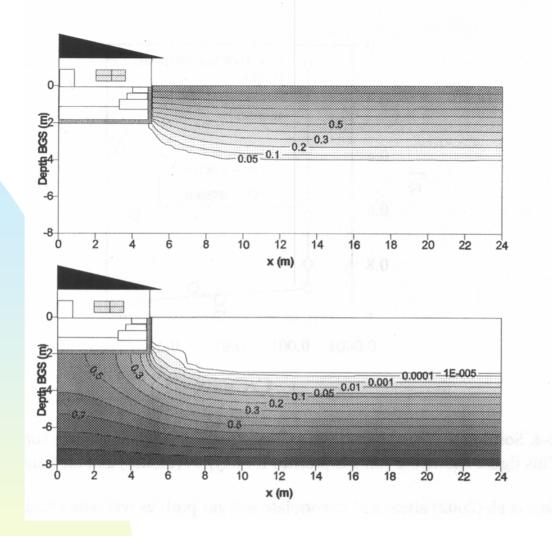
Establish the pathway:

Preliminary Screening;

Evaluate the site for;

- •COCs in soil and groundwater,
- •Vulnerabilities such as shallow groundwater or preferential pathways,
- •Occupied structures within 50 feet of a soil or groundwater source for BTEX sites.
- •Occupied structures within 100 feet of a soil or groundwater source for chlorinated sites.

Establish the pathway:


Step 1-Soil and Groundwater Screening;

- •Compare your site soil and groundwater data to IDEM's screening levels (residential or commercial):
- •If a contaminant concentration in groundwater exceeds the screening level, soil gas or sub-slab vapor sampling is warranted.

Establish the pathway:

Step 2: Soil Gas or Sub-Slab Vapor Screening;

- •If a site has failed soil or groundwater screening, some form of soil gas evaluation is warranted.
- •Soil gas samples can be collected outside the footprint of nearby structures or sub-slab vapor samples can be collected from directly beneath a structure.
- •Sub-slab sampling is preferred by IDEM.

Numerical simulation showing Oxygen (top) and BTEX (bottom) vapor profiles beneath a structure.

Source: American Petroleum Institute, October 2004

Establish the pathway:

Step 2: Sub-Slab Vapor Screening;

- •Sub-slab sampling is more difficult and intrusive, and requires the cooperation of the building owner.
- •Sub-slab sampling techniques are based on EPA guidance.

Establish the pathway:

Step 2: Soil Vapor Screening;

- •If sub-slab samples cannot be collected, then soil gas samples are collected.
- •Soil gas samples should be collected from the upgradient and downgradient sides of a potentially affected building.
- •Multi-depth samples should be collected:
 - •Several feet above the water table.
 - Five feet below the base of the building.

Establish the pathway:

Step 3: Indoor Air Evaluation;

- •If soil gas or sub-slab sample results exceed screening levels, then indoor air sampling is warranted.
- •Indoor air is typically sampled last because of problems with "background" contaminants.
- •Background contaminants may be found in indoor air due to use of common household products that contain chemicals.
- •Examples include benzene from smoking, stored fuel, or cars parked in attached garages.

Establish the pathway:

Step 3: Indoor Air Evaluation;

- •If indoor air sample results exceed the action levels then the pathway is complete.
- •Prompt action is necessary to reduce exposure.
- •Exposure prevention in documented vapor intrusion cases will often be accomplished by installation of a sub-slab depressurization system (a radon system).

The IDEM Approach to Vapor Intrusion Summary

IDEM's draft vapor intrusion guidance is intended to provide a flexible approach for evaluating sites for vapor intrusion.

- •Screening numbers were developed for commercial and residential sites.
- •Screening numbers for chlorinated compounds were developed for different exposure durations (1, 5, 10, 20 and 30 years).
- Screening numbers for groundwater were developed based on depth to groundwater and soil types.

The IDEM Approach to Vapor Intrusion Summary

- •Screening levels were developed for five commonly-occurring contaminants (Benzene, PCE, TCE, 1,2-DCA, and vinyl chloride).
- •Health-protective indoor air numbers are available for a total of 61 compounds.

The IDEM Approach to Vapor Intrusion Summary

The IDEM approach is to establish whether a pathway exists between a source area and a potential receptor using a sequential investigation approach.

- •First, screen soil and groundwater concentrations;
- •Second, collect soil gas or sub-slab soil vapor samples, if necessary,
- •Finally, sample indoor air, if necessary.

Introduction to IDEM's Draft Pilot Program Guidance for Vapor Intrusion

To obtain a copy of the IDEM Draft Vapor Intrusion Guidance document, email;

smeanor@idem.IN.gov

A PDF copy of the document will be sent to you.